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A continuous-time Markov chain sending p(0) to p(1) = ∑j P(i | j) pj(0) : 

• Example: Dynamics of a digital gate in a circuit 

• Example: Dynamics of an entire digital circuit 

• Example: Dynamics of a deterministic finite automaton (DFA) 

• Example: Dynamics of a Turing Machine (TM) 
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A continuous-time Markov chain sending p(0) to p(1) = ∑j P(i | j) pj(0) : 

           ●             Entropy flow rate 

           ●                    Entropy production rate 

•  Entropy production (EP) rate is non-negative 

Van denBroeck and Esposito, Physica A, 2015
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A continuous-time Markov chain sending p(0) to p(1) = ∑j P(i | j) pj(0) : 

Integrate over time: 

• ΔS = S(p1) – S(p0) is gain in Shannon entropy of p 

• -ΔQ is (Shannon) entropy flow from system between t = 0 and t = 1 

• ΔΣ is total entropy production in system between t = 0 and t = 1 
  - cannot be negative 
   (I.e., the second law of thermodynamics)

Van denBroeck and Esposito, Physica A, 2015
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For many non-Markvonian chains sending p(0) to p(1) = ∑j P(i | j) pj(0) : 

• ΔS = S(p1) – S(p0) is gain in Shannon entropy of p 

• -ΔQ is (Shannon) entropy flow from system between t = 0 and t = 1 

• ΔΣ is total entropy production in system between t = 0 and t = 1 
  - cannot be negative 
   (I.e., the second law of thermodynamics)

Ptaszynski and Esposito, PRL, 2019
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GENERALIZED LANDAUER BOUND 

• System connected to multiple reservoirs, e.g., heat baths at different   
temperatures. (So “ ” not defined.) 
• Arbitrary number of states  

• Arbitrary initial distribution p0 

• Arbitrary dynamics P(x1 | x0)  

kBT 
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GENERALIZED LANDAUER BOUND 

• System connected to multiple reservoirs, e.g., heat baths at different   
temperatures. (So “ ” not defined.) 
• Arbitrary number of states  

• Arbitrary initial distribution p0 

• Arbitrary dynamics P(x1 | x0)  

Entropy Production (∆∑) is non-negative. So: 

kBT 

“G𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝐿𝑎𝑛𝑑𝑎𝑢𝑒𝑟′ 𝑠 𝑏𝑜𝑢𝑛𝑑”

−∆Q  ≥  S(p0) − S(p1) 
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BEYOND GENERALIZED LANDAUER 

• System connected to multiple reservoirs, e.g., heat baths at different   
temperatures. (So “ ” not defined.) 
• Arbitrary number of states  

• Arbitrary initial distribution p0 

• Arbitrary dynamics P(x1 | x0)  

Entropy Production (∆∑) is non-negative.  

kBT 

Are there broadly applicable non-negative lower bounds on ∆𝛴 ,  
to complement Landauer’s bound?
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BEYOND GENERALIZED LANDAUER 

• System connected to multiple reservoirs, e.g., heat baths at different   
temperatures. (So “ ” not defined.) 
• Arbitrary number of states  

• Arbitrary initial distribution p0 

• Arbitrary dynamics P(x1 | x0)  

Entropy Production (∆∑) is non-negative. 

  

•Yes.

kBT 

Are there broadly applicable non-negative lower bounds on ∆𝛴 ,  
to complement Landauer’s bound?
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BEYOND GENERALIZED LANDAUER 

Entropy Production (∆∑) is non-negative. 

  

•Yes. 

 - Focus on two: Speed limit theorem (SLT) and Mismatch cost 

Are there broadly applicable non-negative lower bounds on ∆𝛴 ,  

to add to the lower bound ?−∆Q  ≥  S(p0) − S(p1)

Use them to investigate 
the (thermodynamic) resource costs of  

computational machines
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BOOLEAN CIRCUITS

•  Currently, all mass-produced computers are implemented  
       with circuits.

•   The simplest circuit is one without loops or branches (a
       “straight-line program”)

•   If set of allowed gates are a universal 
       basis (e.g., NAND gates), then can
       build a circuit with them to implement 
       any desired Boolean function.
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• For fixed P(x1 | x0), changing p0 changes Landauer cost,  

• N.b., the same P(x1 | x0)   - e.g., same AND gate -   has different , 
depending on where it is in a circuit. 

• So even for a thermo. reversible gate ( = 0), changing the gate’s 
location in a circuit (c  and so) changes -

S(p0) − S(p1)

p0

∆∑(p0) 
hanges S(p0) − S(p1) ∆Q(p0)



13

• Changing a gate’s location in a circuit c  and so 
changes the heat it produces, -  

• Sum those heats over all gates to get minimal heat flow of that circuit 

• Formally, those differences in minimal heat of the circuits are differences in 
EPs of the circuits, arising due to modularity of gates 

➢  A new circuit design optimization problem

hanges S(p0) − S(p1),
∆Q(p0)

Different circuits implementing same Boolean function 
on same input distribution have different minimal heat

Demaine, E., et al., Comm. ACM, 2016 

- Considers a similar problem - but 
incorrectly sets Landauer cost at each gate 
to same value, KT ln(2).
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Original speed limit theorem (SLT): 

• L(p(0), p(1)): L1 distance from distribution p(0) to distribution p(1) 

• A0,1: total number of (stochastic) state jumps from t = 0 to t = 1 

Since introduced, SLT has been strengthened several ways  

(more complicated formulas). 

Shiraishi, N., Funo, K.; Saito, K., PRL (2018)
Delvenne, J., Falasco, G.; arXiv:2110.13050
Lee, J., et al.; PRL (2022)
Van Vu, T., Saito, K.; PRL (2023)
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Original speed limit theorem (SLT): 

• L(p(0), p(1)): L1 distance from distribution p(0) to distribution p(1) 

• A0,1: total number of (stochastic) state jumps from t = 0 to t = 1 

• Suppose uniform initial distribution over all gates and input bits;  

•How does the (Lee et al.) SLT bound vary with error rate of gates,         
for two logically equivalent circuits? 
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Original speed limit theorem (SLT): 

• L(p(0), p(1)): L1 distance from distribution p(0) to distribution p(1) 

• A0,1: total number of (stochastic) state jumps from t = 0 to t = 1 

Tasnim, F., Wolpert, D., 
Korbel J., Lynn, C., et al. 
(2023)
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Original speed limit theorem (SLT): 

• L(p(0), p(1)): L1 distance from distribution p(0) to distribution p(1) 

• A0,1: total number of (stochastic) state jumps from t = 0 to t = 1 

What causes the 
curves to have 
these shapes? 

What are curves 
for other circuits?



18

Original speed limit theorem (SLT): 

• L(p(0), p(1)): L1 distance from distribution p(0) to distribution p(1) 

• A0,1: total number of (stochastic) state jumps from t = 0 to t = 1 

What causes the 
curves to have 
these shapes? 

What are curves 
for other circuits? 

A: Who knows!
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DEPENDENCE OF EP ON INITIAL DISTRIBUTION 

• Arbitrary dynamics P(x1 | x0)  

• Assume system is thermo. reversible for initial distribution q0 

 I.e., 

• Run that system with initial distribution p0 ≠ instead: 

      where D(. || .) is relative entropy (KL divergence)

q0 

Wolpert, D., Kolchinsky, A., New J. Phys. (2020)
Riechers, P.. Gu, M., Phys. Rev. E (2021)
Kolchinsky, A., Wolpert D., arxiv:2103.05734

 
                
ΔΣ(p0) = D(p0 || q0) − D(p1 || q1) 

≥ 0

 ΔΣ = 0 (q0) 



20

DEPENDENCE OF EP ON INITIAL DISTRIBUTION 

• Arbitrary dynamics P(x1 | x0)  

• Assume system is thermo. reversible for initial distribution q0 

     I.e., 

• Run that system with initial distribution p0 ≠ instead: 

      where D(. || .) is relative entropy (KL divergence)

q0 

 
                
ΔΣ(p0) = D(p0 || q0) − D(p1 || q1) 

≥ 0

 ΔΣ = 0 (q0) 

Any nontrivial process that is 
thermodynamically reversible for one initial distribution 

will be costly for any other initial distribution
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DEPENDENCE OF EP ON INITIAL DISTRIBUTION 

• Arbitrary dynamics P(x1 | x0)  

• Assume system is thermo. reversible for initial distribution q0 

     I.e., 

• Run that system with initial distribution p0 ≠ instead: 

      where D(. || .) is relative entropy (KL divergence)

q0 

 
                
ΔΣ(p0) = D(p0 || q0) − D(p1 || q1) 

≥ 0

 ΔΣ = 0 (q0) 

 is called mismatch costD(p0 || q0) − D(p1 || q1)
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Mismatch cost example/ 

•Two distinct bit-erasing gates, each with thermo. rev. initial distribution q0 

• Run gates in parallel, on bits xA and xB, with initial distribution p0(xA, xB) 

• Assume p0(xA) = q0(xA) and p0(xB) = q0(xB).  

• So each gate, by itself, generates zero EP. But: 

•  Formally: Since gates are distinct, the thermo. rev. joint distribution is  

 q0(xA, xB) = q0(xA)q0(xB). 

If p0(xA, xB) statistically couples the bits, then 
full system is not thermo. reversible, 

and generates nonzero EP
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Mismatch cost example/ 

•Two distinct bit-erasing gates, each with thermo. rev. initial distribution q0 

• Run gates in parallel, on bits xA and xB, with initial distribution p0(xA, xB) 

• Assume p0(xA) = q0(xA) and p0(xB) = q0(xB).  

• So each gate, by itself, generates zero EP. But: 

•  Formally: Since gates are distinct, the thermo. rev. joint distribution is  

 q0(xA, xB) = q0(xA)q0(xB). So  D(p0 || q0) − D(p1 || q1) ≠ 0

If p0(xA, xB) statistically couples the bits, then 
full system is not thermo. reversible, 

and generates nonzero EP
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Mismatch cost example/ 

•Two distinct bit-erasing gates, each with thermo. rev. initial distribution q0 

• Run gates in parallel, on bits xA and xB, with initial distribution p0(xA, xB) 

• Assume p0(xA) = q0(xA) and p0(xB) = q0(xB).  

• So each gate, by itself, generates zero EP. But: 

•  Intuition: Running two thermo. reversible gates in parallel loses    
  information in their initial coupling, and so is not thermo. reversible. 

If p0(xA, xB) statistically couples the bits, then 
full system is not thermo. reversible, 

and generates nonzero EP
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Mismatch cost example/ 

•Two distinct bit-erasing gates, each with thermo. rev. initial distribution q0 

• Run gates in parallel, on bits xA and xB, with initial distribution p0(xA, xB) 

• Assume p0(xA) = q0(xA) and p0(xB) = q0(xB).  

• So each gate, by itself, generates zero EP. But: 

•  Broader lesson: Modularity increases EP 

If p0(xA, xB) statistically couples the bits, then 
full system is not thermo. reversible, 

and generates nonzero EP
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Mismatch cost example/ 

•Two distinct bit-erasing gates, each with thermo. rev. initial distribution q0 

• Run gates in parallel, on bits xA and xB, with initial distribution p0(xA, xB) 

• Assume p0(xA) = q0(xA) and p0(xB) = q0(xB).  

• So each gate, by itself, generates zero EP. But: 

•  Broader lesson: Whatever its practical benefits might be,  

  modularity is thermodynamically costly (!)

If p0(xA, xB) statistically couples the bits, then 
full system is not thermo. reversible, 

and generates nonzero EP
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MISMATCH COST OF BOOLEAN CIRCUITS

• Physical process updating each gate in a real circuit depends 
only on that gate’s inputs – it is independent of all other gates. 

• Similar to parallel bit erasure. 

Wolpert, D., PRL (2020)
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MISMATCH COST OF BOOLEAN CIRCUITS

• On first use of circuit, inputs and all gates uniformly random 
• Assume priors of gates are also all uniformly random 

• Then mismatch cost = 0   - for the first use of the circuit
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MISMATCH COST OF BOOLEAN CIRCUITS

• On first use of circuit, inputs and all gates uniformly random 
• Assume priors of gates are also all uniformly random 
• Suppose on second use, inputs are again uniformly random – 

but gates are reinitialized, e.g., to uniformly random. 

• Then mismatch cost = 0   - for the second use of the circuit.
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MISMATCH COST OF BOOLEAN CIRCUITS

• On first use of circuit, inputs and all gates uniformly random 
• Assume priors of gates are also all uniformly random 
• Suppose on second use, inputs are again uniformly random – 

but gates still have their values from end of first use. 
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MISMATCH COST OF BOOLEAN CIRCUITS

• On first use of circuit, inputs and all gates uniformly random 
• Assume priors of gates are also all uniformly random 
• Suppose on second use, inputs are again uniformly random – 

but gates still have their values from end of first use. 

• Then mismatch cost ≠ 0   - for the second use of the circuit.
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MISMATCH COST OF BOOLEAN CIRCUITS

Tasnim, F., Wolpert, D., 
Korbel J., Lynn, C., et al. 
(2023)
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MISMATCH COST OF BOOLEAN CIRCUITS

What causes 
curves to have 
these shapes? 

What are 
curves for other 

circuits? 

A: Who knows!

Tasnim, F., Wolpert, D., 
Korbel J., Lynn, C., et al. 
(2023)
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DETERMINISTIC FINITE AUTOMATA (DFA)
• Simplest computational machine in Chomsky hierarchy 

 - Finite number of states; one initial state, multiple “accept states” 
 - Feed in a finite string of bits; 
 - Each (bit, state) pair maps to a new state, after which next bit is read 
 - A DFA “accepts” a string if it causes the DFA to end in an accept state 
 - “Language” of a DFA is all input strings that it accepts 
 - Many languages that are not accepted by any DFA 

• Example: DFA that accepts any string with no more than two 
successive ‘b’ bits: 
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• Every digital computer is “local”   
 - the only part of memory any processing unit is directly physically     
coupled to is its current input 

• E.g., in a DFA, state update only physically coupled to current input 
 symbol, not any earlier / later symbols 

• Results in “modularity (mismatch) cost” – just like parallel bit erasure 
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• Every (synchronous) digital computer is “periodic”   
 - every successive iteration is the same physical process, and so 
   in particular has the same prior. 

• E.g., in a DFA, every iteration has same prior 

• So if prior = actual distribution for iteration i (so zero mismatch cost),  
     they will differ for iteration i + 1 in general (so nonzero mismatch cost!) 

• Results in “modularity (mismatch) cost” – just like parallel bit erasure 
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• Total mismatch cost = modularity cost + local cost
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EXAMPLE

Input strings have IID symbols with equal probability of a and b
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EXAMPLE

Input strings have IID symbols with probability of a = 0.8 
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EXAMPLE

Input strings are first order Markov chains (starting from uniform probability)
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EXAMPLE

Input strings have IID symbols with probability of a = 0.8 
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EXAMPLE

Ouldridge, T., Wolpert, D., arxiv:2208.06895 (2022)
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EXAMPLE

What causes curves to have these shapes? 
What are curves for other DFAs? 

A: Who knows!
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Other recent results based on “nitty gritty details”of 
computers implemented using CMOS technology. 

Less abstract than computational machines – but not deep 
in the weeds CMOS technology:

All these bounds on thermodynamic cost of 
computers hold independent of nitty gritty 
details of physical system implementing the 

computer

Mismatch cost for implementing pseudo-code 

(Periodic process, but for simplicity, not local)
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Insertion sort

• Algorithm to sort any list of six integers into ascending order 

• All contributions to mismatch cost come from many-to-one 
maps over the sequence of six integers. 

Just like many-to-one maps cause nonzero “Landauer cost”, 
many-to-one maps cause nonzero mismatch cost



46

Insertion sort

• Each cell: different joint value of 
variables in the pseudo-code 

• Trajectories can merge  
 - many-to-one maps

𝒜(𝜏) = ln(𝜖𝑋1
⋯𝜖𝑋𝜏) =

𝜏

∑
𝑠=1

ln𝜖𝑋𝑠

Total mismatch cost summed along a trajectory for 
a “maxent” (uniform) prior:

(where 𝜖xi
 is “entrance rate” into state xi, i.e., 
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𝑂(𝑛2)

𝑂(𝑛)

Energetic complexity!
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𝑂(𝑛2)

𝑂(𝑛)

Energetic complexity!

Our bound Landauer’s bound

Kardes, G., Manzano, G.; Wolpert, D., Roldan, E. (2023)
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Thermodynamics of Turing Machines

•  There are many different abstract models of computers, with  
       different computational powers.

•   A particularly important one is the Turing machine (TM)

•  Church-Turing thesis: “Every function which would naturally 
be regarded as computable … is computable by a Turing 
machine.” (Including computations in the human brain.)
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1)  Bi-infinite bit string (“tape”) s.
2)  “Head” with n internal states y, one a “halt state”
3)  At each t, head is located at bit bt which has value s(bt).
4)  At each t, based on (yt, bt), the head:

i) changes its state to yt+1;
ii) writes a new binary value at bt;
iii) moves, by up to one bit, in either direction on the tape 

5)  Computation ends (if ever) at time τ if head halts then.
6)  The associated computation is the map from s0 to sτ

… ...
1 1 0 1 1 0 0 0 1 0 1 0

y

Turing Machines
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1)    The standard model of computation (up to and including 
        human “computers”)

2)   In particular, the Python interpreter on the laptop in front of you is 
      a Turing machine. 

      …                      ...

1 1 0 1 1 0 0 0 1 0 1 0

y

Turing Machines
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Turing Machines

1)    The standard model of computation (up to and including 
        human “computers”)

2)  Almost all binary-valued functions f(.) over bit strings cannot be 
      computed by any TM.

   Proof: Set of all TMs = {0, 1}*, the set of all finite bit 
strings

  Set of all f(.) = 2{0, 1}*. QED.

      …                      ...

1 1 0 1 1 0 0 0 1 0 1 0

y
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Smallest input to a Turing Machine

Kolmogorov complexity of bit string v, K(v):

Minimum number of non-zero bits in an input bit string that 
causes the Turing machine to produce output string v and halt.

➢  Very common (and powerful) measure of “how complex” v is.

➢ Related to Shannon entropy (“complexity” of a singleton rather 
than of a distribution)

➢  “Uncomputable”, i.e., no computer program can calculate it. 
(There is no Turing machine that takes any v as input and 
eventually produces K(v) as output and halts.)
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• Generate input strings s to a TM by coin-flipping distribution:

P(s) = 2-|s| / Z (Normalization constant Z ≤ 1)

•  Kolmogorov complexity of bit string v, K(v):

Minimum length input string s to a given TM 
for it to compute v and halt.

• Bayes theorem: 
K(v) is length of most probable input s, given that output = v
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Set thermo. rev. input distribution q0(s) to coin-flipping distribution

Thermodynamic complexity of bit string v: 
Minimum heat flow for any input distribution p0(s) to a TM 
(that is reversible for q0(s)) to compute v and then halt:

where
 

➢  K(v) is Kolmogorov complexity of v
➢  Z  – the normalization constant –  is Chaitin’s constant
➢  G(v) is probability of v under q0(s)

K(v)  +  log[G(v)] + log[Z]

Wolpert, D., J. Phys. A (2019)
Kolchinsky, A., Wolpert, D., Phys. Rev. R (2020)
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Set thermo. rev. input distribution q0(s) to coin-flipping distribution

Thermodynamic complexity of bit string v: 
Minimum heat flow for any input distribution p0(s) to a TM
(that is reversible for q0(s)) to compute v and then halt:

where
 

➢  K(v) is Kolmogorov complexity of v
➢  Z  – the normalization constant –  is Chaitin’s constant
➢  G(v) is probability of v under q0(s)

A “correction” to Kolmogorov complexity, reflecting 
cost of many-to-one maps as the TM evolves

K(v)  +  log[G(v)] + log[Z]



57

Kolmogorov complexity of v:

 

State of
UTM, s

       
                                                      

Time t

K(v) is unbounded – no constant exceeds  
length of {the shortest string to compute v} for all v 

K(v) 
v{
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Thermodynamic complexity of v:

 

State of
UTM, s

       
                                                                               

Time

Minimal heat flow is bounded – there is a constant 
that exceeds {minimal EF to compute v} for all v:

log[sum of lengths of red lines] 

K(v)  +  log[G(v)] + log[Z]

K(v)  {
v

Wolpert, D., J. Physics A (2019)

= q0(s)
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Thermodynamic complexity of v:

 

State of
UTM, s

       
                                                                              

Time

 Expected heat flow is infinite

= q0(s)

K(v)  +  log[G(v)] + log[Z]

Kolchinsky, A., and Wolpert, D.,Phys. Rev. Res. (2020)
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Thermodynamic complexity of v:

 

State of
UTM, s

       
                                                                              

Time

 

= q0(s)

K(v)  +  log[G(v)] + log[Z]

How do these results get modified if the update function of the TM 
is thermodynamically inefficient?

Answer: Who knows? 

   (See papers by Brittain et al., and Strasberg et al., in bibliography)
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• Equation for heat expelled by a dynamic system (like a computer): 
  

 = Landauer cost   +  EP  

• Now have broadly applicable bounds on the second resource cost, EP  

• Here consider two such bounds on that resource cost, SLT and mismatch cost. 

1: Both SLT and mismatch cost distinguish among  
 computationally equivalent circuits with identical number of gates 

2: Rich behavior of mismatch cost for DFAs run for multiple iterations 

3: Nontrivial scaling of mismatch cost with input size for insert-sort algorithm 

4: Thermodynamic Kolmogorov complexity is bounded (unlike Kolmogorov complexity) 

5:  Average thermodynamic work to run a TM is infinite

EF(p0) (p0) (p0)

(p0)

SUMMARY OF RESULTS
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