Extending computational complexity theory to include thermodynamic resource costs

David H. Wolpert (Santa Fe Institute)
with
Gülce Kardes, Jan Korbel, Tom Ouldridge, Farita Tasnim

The Abdus Salam
International Centre
for Theoretical Physics

A continuous-time Markov chain sending $p(0)$ to $p(1)=\sum_{j} P(i \mid j) p_{j}(0)$:

$$
\frac{d p_{i}(t)}{d t}=\sum_{j} K_{i j}(t) p_{j}(t)
$$

- Example: Dynamics of a digital gate in a circuit
- Example: Dynamics of an entire digital circuit
- Example: Dynamics of a deterministic finite automaton (DFA)
- Example: Dynamics of a Turing Machine (TM)

A continuous-time Markov chain sending $p(0)$ to $p(1)=\sum_{j} P(i \mid j) p_{j}(0)$:

$$
\begin{aligned}
\frac{d p_{i}(t)}{d t} & =\sum_{j} K_{i j}(t) p_{j}(t) \\
\frac{d S(p(t))}{d t}=\dot{Q}(t)+\dot{\Sigma}(t) & \\
\quad \cdot \dot{Q}(t)=\sum_{i j} K_{i j}(t) p_{j}(t) \ln \frac{K_{j i}(t)}{K_{i j}(t)} & \text { Entropy flow rate } \\
\cdot \dot{\Sigma}(t)=\sum_{i j} K_{i j}(t) p_{j}(t) \ln \frac{K_{i j}(t) p_{j}(t)}{K_{j i}(t) p_{i}(t)} & \text { Entropy production rate }
\end{aligned}
$$

- Entropy production (EP) rate is non-negative

A continuous-time Markov chain sending $p(0)$ to $p(1)=\sum_{j} P(i \mid j) p_{j}(0)$:

$$
\begin{aligned}
& \frac{d p_{i}(t)}{d t}=\sum_{j} K_{i j}(t) p_{j}(t) \\
& \frac{d S(p(t))}{d t}=\dot{Q}(t)+\dot{\Sigma}(t)
\end{aligned}
$$

Integrate over time: $-\Delta Q=\Delta \Sigma-\Delta S$

- $\Delta S=S\left(p_{1}\right)-S\left(p_{0}\right)$ is gain in Shannon entropy of p
- $-\Delta Q$ is (Shannon) entropy flow from system between $t=0$ and $t=1$
- $\Delta \Sigma$ is total entropy production in system between $t=0$ and $t=1$
- cannot be negative
(I.e., the second law of thermodynamics)

For many non-Markvonian chains sending $p(0)$ to $p(1)=\sum_{j} P(i \mid j) p_{j}(0)$:

$$
-\Delta Q=\Delta \Sigma-\Delta S
$$

- $\Delta S=S\left(p_{1}\right)-S\left(p_{0}\right)$ is gain in Shannon entropy of p
- $-\Delta Q$ is (Shannon) entropy flow from system between $t=0$ and $t=1$
- $\Delta \Sigma$ is total entropy production in system between $t=0$ and $t=1$
- cannot be negative
(I.e., the second law of thermodynamics)

GENERALIZED LANDAUER BOUND

- System connected to multiple reservoirs, e.g., heat baths at different temperatures. (So "kBT" not defined.)
- Arbitrary number of states
- Arbitrary initial distribution p_{0}
- Arbitrary dynamics $\mathrm{P}\left(\mathrm{x}_{1} \mid \mathrm{x}_{0}\right)$

GENERALIZED LANDAUER BOUND

- System connected to multiple reservoirs, e.g., heat baths at different temperatures. (So "kBT" not defined.)
- Arbitrary number of states
- Arbitrary initial distribution p_{0}
- Arbitrary dynamics $\mathrm{P}\left(\mathrm{x}_{1} \mid \mathrm{x}_{0}\right)$

$$
-\Delta Q=\Delta \Sigma+S\left(p_{0}\right)-S\left(p_{1}\right)
$$

Entropy Production $(\Delta \Sigma)$ is non-negative. So:
"Generalized Landauer's bound"

$$
-\Delta Q \geq S(p 0)-S(p 1)
$$

BEYOND GENERALIZED LANDAUER

- System connected to multiple reservoirs, e.g., heat baths at different temperatures. (So "kBT" not defined.)
- Arbitrary number of states
- Arbitrary initial distribution p_{0}
- Arbitrary dynamics $\mathrm{P}\left(\mathrm{x}_{1} \mid \mathrm{x}_{0}\right)$

$$
-\Delta Q=\Delta \Sigma+S\left(p_{0}\right)-S\left(p_{1}\right)
$$

Entropy Production $(\Delta \Sigma)$ is non-negative.
Are there broadly applicable non-negative lower bounds on $\Delta \Sigma$, to complement Landauer's bound?

BEYOND GENERALIZED LANDAUER

- System connected to multiple reservoirs, e.g., heat baths at different temperatures. (So "kBT" not defined.)
- Arbitrary number of states
- Arbitrary initial distribution p_{0}
- Arbitrary dynamics $\mathrm{P}\left(\mathrm{x}_{1} \mid \mathrm{x}_{0}\right)$

$$
-\Delta Q=\Delta \Sigma+S\left(p_{0}\right)-S\left(p_{1}\right)
$$

Entropy Production $(\Delta \Sigma)$ is non-negative.
Are there broadly applicable non-negative lower bounds on $\Delta \Sigma$, to complement Landauer's bound?
-Yes.

BEYOND GENERALIZED LANDAUER

$$
-\Delta Q=\Delta \Sigma+S\left(p_{0}\right)-S\left(p_{1}\right)
$$

Entropy Production $(\Delta \Sigma)$ is non-negative.

Are there broadly applicable non-negative lower bounds on $\Delta \Sigma$,

$$
\text { to add to the lower bound }-\Delta Q \geq S(p 0)-S(p 1) ?
$$

- Yes.
- Focus on two: Speed limit theorem (SLT) and Mismatch cost

Use them to investigate the (thermodynamic) resource costs of computational machines

BOOLEAN CIRCUITS

- Currently, all mass-produced computers are implemented with circuits.
- The simplest circuit is one without loops or branches (a "straight-line program")
- If set of allowed gates are a universal basis (e.g., NAND gates), then can build a circuit with them to implement any desired Boolean function.

$$
-\Delta Q=\Delta \Sigma+S\left(p_{0}\right)-S\left(p_{1}\right)
$$

- For fixed $P\left(x_{1} \mid x_{0}\right)$, changing p_{0} changes Landauer cost, $S(p 0)-S(p 1)$
- N.b., the same $P\left(x_{1} \mid x_{0}\right)$ - e.g., same AND gate - has different $p 0$, depending on where it is in a circuit.
- So even for a thermo. reversible gate $(\Delta \Sigma(p 0)=0)$, changing the gate's location in a circuit (changes $S(p 0)-S(p 1)$ and so) changes $-\Delta Q(p 0)$

- Changing a gate's location in a circuit changes $S(p 0)-S(p 1)$, and so changes the heat it produces, $-\Delta \mathrm{Q}(\mathrm{p} 0)$
- Sum those heats over all gates to get minimal heat flow of that circuit Different circuits implementing same Boolean function on same input distribution have different minimal heat
- Formally, those differences in minimal heat of the circuits are differences in EPs of the circuits, arising due to modularity of gates
$>$ A new circuit design optimization problem

Demaine, E., et al., Comm. ACM, 2016

- Considers a similar problem - but incorrectly sets Landauer cost at each gate to same value, $\mathrm{KT} \ln (2)$.

Original speed limit theorem (SLT): $\Delta \Sigma \geq \frac{L(p(0), p(1))}{A_{0,1}}$

- $A_{0, i}$: total number of (stochastic) state jumps from $t=0$ to $t=1$

Since introduced, SLT has been strengthened several ways (more complicated formulas).

Shiraishi, N., Funo, K.; Saito, K., PRL (2018)
Delvenne, J., Falasco, G.; arXiv:2110.13050
Lee, J., et al.; PRL (2022)
Van Vu, T., Saito, K.; PRL (2023)

Original speed limit theorem (SLT): $\Delta \Sigma \geq \frac{L(p(0), p(1))}{A_{0,1}}$

- $A_{0, i}$: total number of (stochastic) state jumps from $t=0$ to $t=1$
- Suppose uniform initial distribution over all gates and input bits; -How does the (Lee et al.) SLT bound vary with error rate of gates, for two logically equivalent circuits?

Original speed limit theorem (SLT): $\Delta \Sigma \geq \frac{L(p(0), p(1))}{A_{0,1}}$

- $A_{0,1}$: total number of (stochastic) state jumps from $t=0$ to $t=1$

Original speed limit theorem (SLT): $\Delta \Sigma \geq \frac{L(p(0), p(1))}{A_{0,1}}$

- $A_{0, i}$: total number of (stochastic) state jumps from $\mathrm{t}=0$ to $\mathrm{t}=1$

What causes the curves to have these shapes?
What are curves for other circuits?

Original speed limit theorem (SLT): $\Delta \Sigma \geq \frac{L(p(0), p(1))}{A_{0,1}}$

- $A_{0,1}$: total number of (stochastic) state jumps from $t=0$ to $t=1$

What causes the curves to have these shapes?
What are curves for other circuits?

A: Who knows!

DEPENDENCE OF EP ON INITIAL DISTRIBUTION

- Arbitrary dynamics $\mathrm{P}\left(\mathrm{x}_{1} \mid \mathrm{x}_{0}\right)$
- Assume system is thermo. reversible for initial distribution q_{0}

$$
\text { I.e., } \Delta \Sigma(q 0)=0
$$

- Run that system with initial distribution $\mathrm{p}_{0} \neq \mathrm{q} 0$ instead:

$$
\begin{aligned}
\Delta \Sigma(p 0)= & D(p 0 \| q 0)-D(p 1| | q 1) \\
& \geq 0
\end{aligned}
$$

where $D(.| |$.$) is relative entropy (KL divergence)$

Wolpert, D., Kolchinsky, A., New J. Phys. (2020)
Riechers, P.. Gu, M., Phys. Rev. E (2021)
Kolchinsky, A., Wolpert D., arxiv:2103.05734

DEPENDENCE OF EP ON INITIAL DISTRIBUTION

- Arbitrary dynamics $\mathrm{P}\left(\mathrm{x}_{1} \mid \mathrm{x}_{0}\right)$
- Assume system is thermo. reversible for initial distribution q_{0}

$$
\text { I.e., } \Delta \Sigma(q 0)=0
$$

- Run that system with initial distribution $\mathrm{p}_{0} \neq \mathrm{q} 0$ instead:

$$
\begin{aligned}
\Delta \Sigma(p 0)= & D(p 0 \| q 0)-D(p 1| | q 1) \\
& \geq 0
\end{aligned}
$$

where $D(. \|$.$) is relative entropy (KL divergence)$

Any nontrivial process that is
thermodynamically reversible for one initial distribution will be costly for any other initial distribution

DEPENDENCE OF EP ON INITIAL DISTRIBUTION

- Arbitrary dynamics $\mathrm{P}\left(\mathrm{x}_{1} \mid \mathrm{x}_{0}\right)$
- Assume system is thermo. reversible for initial distribution q_{0}

$$
\text { I.e., } \Delta \Sigma(q 0)=0
$$

- Run that system with initial distribution $\mathrm{p}_{0} \neq \mathrm{q} 0$ instead:

$$
\begin{aligned}
\Delta \Sigma(p 0)= & D(p 0 \| q 0)-D(p 1 \| q 1) \\
& \geq 0
\end{aligned}
$$

where $D(.| |$.$) is relative entropy (KL divergence)$

$$
D(p 0 \| q 0)-D(p 1 \| q 1) \text { is called mismatch cost }
$$

Mismatch cost example/

-Two distinct bit-erasing gates, each with thermo. rev. initial distribution q_{0}

- Run gates in parallel, on bits x^{A} and x^{B}, with initial distribution $p_{0}\left(x^{A}, x^{B}\right)$
- Assume $p_{0}\left(x^{A}\right)=q_{0}\left(x^{A}\right)$ and $p_{0}\left(x^{B}\right)=q_{0}\left(x^{B}\right)$.
- So each gate, by itself, generates zero EP. But:

> If $p_{0}\left(x^{A}, x^{B}\right)$ statistically couples the bits, then full system is not thermo. reversible, and generates nonzero $E P$

- Formally: Since gates are distinct, the thermo. rev. joint distribution is

$$
q_{0}\left(x^{A}, x^{B}\right)=q_{0}\left(x^{A}\right) q_{0}\left(x^{B}\right) .
$$

Mismatch cost example/

-Two distinct bit-erasing gates, each with thermo. rev. initial distribution q_{0}

- Run gates in parallel, on bits x^{A} and x^{B}, with initial distribution $p_{0}\left(x^{A}, x^{B}\right)$
- Assume $p_{0}\left(x^{A}\right)=q_{0}\left(x^{A}\right)$ and $p_{0}\left(x^{B}\right)=q_{0}\left(x^{B}\right)$.
- So each gate, by itself, generates zero EP. But:

> If $p_{0}\left(x^{A}, x^{B}\right)$ statistically couples the bits, then full system is not thermo. reversible, and generates nonzero EP

- Formally: Since gates are distinct, the thermo. rev. joint distribution is

$$
q_{0}\left(x^{A}, x^{B}\right)=q_{0}\left(x^{A}\right) q_{0}\left(x^{B}\right) \text {. So } D(p 0 \| q 0)-D(p 1 \| q 1) \neq 0
$$

Mismatch cost example/

-Two distinct bit-erasing gates, each with thermo. rev. initial distribution q_{0}

- Run gates in parallel, on bits x^{A} and x^{B}, with initial distribution $p_{0}\left(x^{A}, x^{B}\right)$
- Assume $p_{0}\left(x^{A}\right)=q_{0}\left(x^{A}\right)$ and $p_{0}\left(x^{B}\right)=q_{0}\left(x^{B}\right)$.
- So each gate, by itself, generates zero EP. But:

$$
\begin{gathered}
\text { If } p_{0}\left(x^{A}, x^{B}\right) \text { statistically couples the bits, then } \\
\text { full system is not thermo. reversible, } \\
\text { and generates nonzero EP }
\end{gathered}
$$

- Intuition: Running two thermo. reversible gates in parallel loses information in their initial coupling, and so is not thermo. reversible.

Mismatch cost example/

-Two distinct bit-erasing gates, each with thermo. rev. initial distribution q_{0}

- Run gates in parallel, on bits x^{A} and x^{B}, with initial distribution $p_{0}\left(x^{A}, x^{B}\right)$
- Assume $p_{0}\left(x^{A}\right)=q_{0}\left(x^{A}\right)$ and $p_{0}\left(x^{B}\right)=q_{0}\left(x^{B}\right)$.
- So each gate, by itself, generates zero EP. But:

$$
\begin{gathered}
\text { If } p_{0}\left(x^{A}, x^{B}\right) \text { statistically couples the bits, then } \\
\text { full system is not thermo. reversible, } \\
\text { and generates nonzero EP }
\end{gathered}
$$

- Broader lesson: Modularity increases EP

Mismatch cost example/

-Two distinct bit-erasing gates, each with thermo. rev. initial distribution q_{0}

- Run gates in parallel, on bits x^{A} and x^{B}, with initial distribution $p_{0}\left(x^{A}, x^{B}\right)$
- Assume $p_{0}\left(x^{A}\right)=q_{0}\left(x^{A}\right)$ and $p_{0}\left(x^{B}\right)=q_{0}\left(x^{B}\right)$.
- So each gate, by itself, generates zero EP. But:

$$
\begin{gathered}
\text { If } p_{0}\left(x^{A}, x^{B}\right) \text { statistically couples the bits, then } \\
\text { full system is not thermo. reversible, } \\
\text { and generates nonzero EP }
\end{gathered}
$$

- Broader lesson: Whatever its practical benefits might be, modularity is thermodynamically costly (!)

MISMATCH COST OF BOOLEAN CIRCUITS

- Physical process updating each gate in a real circuit depends only on that gate's inputs - it is independent of all other gates.
- Similar to parallel bit erasure.

MISMATCH COST OF BOOLEAN CIRCUITS

- On first use of circuit, inputs and all gates uniformly random
- Assume priors of gates are also all uniformly random
- Then mismatch cost $=0 \quad$ - for the first use of the circuit

MISMATCH COST OF BOOLEAN CIRCUITS

- On first use of circuit, inputs and all gates uniformly random
- Assume priors of gates are also all uniformly random
- Suppose on second use, inputs are again uniformly random but gates are reinitialized, e.g., to uniformly random.
- Then mismatch cost $=0 \quad$ - for the second use of the circuit.

MISMATCH COST OF BOOLEAN CIRCUITS

- On first use of circuit, inputs and all gates uniformly random
- Assume priors of gates are also all uniformly random
- Suppose on second use, inputs are again uniformly random but gates still have their values from end of first use.

MISMATCH COST OF BOOLEAN CIRCUITS

- On first use of circuit, inputs and all gates uniformly random
- Assume priors of gates are also all uniformly random
- Suppose on second use, inputs are again uniformly random but gates still have their values from end of first use.
- Then mismatch cost $\neq \mathbf{0}$ - for the second use of the circuit.

MISMATCH COST OF BOOLEAN CIRCUITS

Tasnim, F., Wolpert, D.,
Korbel J., Lynn, C., et al. (2023)

MISMATCH COST OF BOOLEAN CIRCUITS

Tasnim, F., Wolpert, D., Korbel J., Lynn, C., et al. (2023)

DETERMINISTIC FINITE AUTOMATA (DFA)

- Simplest computational machine in Chomsky hierarchy
- Finite number of states; one initial state, multiple "accept states"
- Feed in a finite string of bits;
- Each (bit, state) pair maps to a new state, after which next bit is read
- A DFA "accepts" a string if it causes the DFA to end in an accept state
- "Language" of a DFA is all input strings that it accepts
- Many languages that are not accepted by any DFA
- Example: DFA that accepts any string with no more than two successive 'b' bits:

- Every digital computer is "local"
- the only part of memory any processing unit is directly physically coupled to is its current input
- E.g., in a DFA, state update only physically coupled to current input symbol, not any earlier / later symbols
- Results in "modularity (mismatch) cost" - just like parallel bit erasure

- Every (synchronous) digital computer is "periodic"
- every successive iteration is the same physical process, and so in particular has the same prior.
- E.g., in a DFA, every iteration has same prior
- So if prior = actual distribution for iteration i (so zero mismatch cost), they will differ for iteration $i+1$ in general (so nonzero mismatch cost!)
- Results in "modularity (mismatch) cost" - just like parallel bit erasure

- Total mismatch cost $=$ modularity cost + local cost

EXAMPLE

Input strings have IID symbols with equal probability of a and b

EXAMPLE

Input strings have IID symbols with probability of $\mathrm{a}=0.8$

EXAMPLE

Input strings are first order Markov chains (starting from uniform probability)

EXAMPLE

Input strings have IID symbols with probability of $\mathrm{a}=0.8$

41

EXAMPLE

Ouldridge, T., Wolpert, D., arxiv:2208.06895 (2022)

EXAMPLE

What causes curves to have these shapes? What are curves for other DFAs?

A: Who knows!

All these bounds on thermodynamic cost of computers hold independent of nitty gritty details of physical system implementing the computer

Other recent results based on "nitty gritty details" of computers implemented using CMOS technology.

Less abstract than computational machines - but not deep in the weeds CMOS technology:

Mismatch cost for implementing pseudo-code
(Periodic process, but for simplicity, not local)

- Algorithm to sort any list of six integers into ascending order

Insertion sort

(a) | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 2 | 4 | 6 | 1 | 3 |

(b) | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 5 | 4 | 6 | 1 | 3 |
| | | 4 | | | |

(c)	1	2	3	4	5	6
2	4	5	6	1	3	

(d)	1	2	3	4	5	6
2	4	5	6	1	3	

(e) | 1 | 2 | 3 | 4 | 5 | 6 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 4 | 5 | 6 | 3 | |
| | | | | | | |
| | | | | | | |

(f) | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | 5 | 6 |

- All contributions to mismatch cost come from many-to-one maps over the sequence of six integers.

Just like many-to-one maps cause nonzero "Landauer cost", many-to-one maps cause nonzero mismatch cost

Insertion sort

(a) | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 2 | 4 | 6 | 1 | 3 |
| | | | | | |
| | | | | | |

(c) | 2 | | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 4 | 5 | 6 | 1 | 3 | |

(d) | 1 | 2 | 3 | 4 | 5 | 6 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 4 | 5 | 6 | 1 | 3 | |
| | | | A | | 4 | |

(e) | 1 | 2 | 3 | 4 | 5 | 6 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 4 | 5 | 6 | 3 | |
| | | | | | | |
| | | | | | | |
| | | | | | | |

(f) | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | 2 | 3 | 4 | 5 | 6 |

- Each cell: different joint value of variables in the pseudo-code
- Trajectories can merge
- many-to-one maps

Total mismatch cost summed along a trajectory for a "maxent" (uniform) prior:
$\mathscr{A}(\tau)=\ln \left(\epsilon_{X_{1}} \cdots \epsilon_{X_{\tau}}\right)=\sum_{s=1}^{\tau} \ln \epsilon_{X_{s}} \quad$ (where $\epsilon_{\mathrm{x}_{\mathrm{i}}}$ is "entrance rate" into state x x_{i}, i.e., $\epsilon_{x_{i}}=\sum_{x_{i-1}} P\left(x_{i} \mid x_{i-1}\right)$

Energetic complexity!

Energetic complexity!

Landauer's bound

Time	Space (words)	Energy (bits)
$\Theta\left(n^{2}\right)$	$\Theta(n)$	0

Energy-Efficient Algorithms

Erik D. Demaine *
MIT CSAIL
32 Vassar Street Cambridge, MA 02139
edemaine@mit.edu

Jayson Lynch* MIT CSAIL 32 Vassar Street 32 Vassar Street
Cambridge, MA 02139 jayson!@mit.edu

Geronimo J. Mirano* MIT CSAIL 32 Vassar Street Cambridge, MA 02139 geronm@mit.edu

Nirvan Tyagi MIT CSAIL 32 Vassar Street Cambridge, MA 0213 ntyagi@mit.edu

Kardes, G., Manzano, G.; Wolpert, D., Roldan, E. (2023)

Thermodynamics of Turing Machines

- There are many different abstract models of computers, with different computational powers.
- A particularly important one is the Turing machine (TM)
- Church-Turing thesis: "Every function which would naturally be regarded as computable ... is computable by a Turing machine." (Including computations in the human brain.)

Turing Machines

1) Bi-infinite bit string ("tape") s.
2) "Head" with n internal states y, one a "halt state"
3) At each t, head is located at bit b_{t} which has value $s\left(b_{t}\right)$.
4) At each t, based on $\left(y_{t}, b_{t}\right)$, the head:
i) changes its state to y_{t+1};
ii) writes a new binary value at b_{t};
iii) moves, by up to one bit, in either direction on the tape
5) Computation ends (if ever) at time τ if head halts then.
6) The associated computation is the map from s_{0} to s_{τ}

Turing Machines

1) The standard model of computation (up to and including human "computers")
2) In particular, the Python interpreter on the laptop in front of you is a Turing machine.

51

Turing Machines

1) The standard model of computation (up to and including human "computers")
2) Almost all binary-valued functions $f($.$) over bit strings cannot be$ computed by any TM.

Proof: Set of all TMs $=\{0,1\}^{*}$, the set of all finite bit strings

$$
\text { Set of all } \mathrm{f}(.)=2\{0,1\}^{*} \text {. QED. }
$$

Smallest input to a Turing Machine

Kolmogorov complexity of bit string $v, \mathrm{~K}(v)$:

Minimum number of non-zero bits in an input bit string that causes the Turing machine to produce output string v and halt.
$>$ Very common (and powerful) measure of "how complex" v is.
$>$ Related to Shannon entropy ("complexity" of a singleton rather than of a distribution)
> "Uncomputable", i.e., no computer program can calculate it. (There is no Turing machine that takes any v as input and eventually produces $K(v)$ as output and halts.)

- Generate input strings s to a TM by coin-flipping distribution:

$$
P(\mathbf{s})=2-|s| / Z
$$

(Normalization constant $\mathrm{Z} \leq 1$)

- Kolmogorov complexity of bit string $v, \mathrm{~K}(v)$:

Minimum length input string s to a given TM for it to compute v and halt.

- Bayes theorem:
$\mathrm{K}(v)$ is length of most probable input \boldsymbol{s}, given that output $=v$

Set thermo. rev. input distribution $\mathrm{q}_{0}(s)$ to coin-flipping distribution

Thermodynamic complexity of bit string v :
Minimum heat flow for any input distribution $\mathrm{p}_{0}(\boldsymbol{s})$ to a TM
(that is reversible for $\mathrm{q}_{0}(s)$) to compute v and then halt:

$$
K(v)+\log [G(v)]+\log [Z]
$$

where
$>K(v)$ is Kolmogorov complexity of v
$>\mathrm{Z}$ - the normalization constant - is Chaitin's constant
$>G(v)$ is probability of v under $\mathrm{q}_{0}(\boldsymbol{s})$

Set thermo. rev. input distribution $\mathrm{q}_{0}(s)$ to coin-flipping distribution

Thermodynamic complexity of bit string v :
Minimum heat flow for any input distribution $\mathrm{p}_{0}(\boldsymbol{s})$ to a TM (that is reversible for $\mathrm{q}_{0}(s)$) to compute v and then halt:

$$
K(v)+\log [G(v)]+\log [Z]
$$

where
$>K(v)$ is Kolmogorov complexity of v
$>\mathrm{Z}$ - the normalization constant - is Chaitin's constant
$>G(v)$ is probability of v under $\mathrm{q}_{0}(\boldsymbol{s})$

A "correction" to Kolmogorov complexity, reflecting cost of many-to-one maps as the TM evolves

Kolmogorov complexity of v :

$K(v)$ is unbounded - no constant exceeds length of $\{$ the shortest string to compute $v\}$ for all v

Thermodynamic complexity of v :

$$
\mathrm{K}(v)+\log [\mathrm{G}(v)]+\log [\mathrm{Z}]
$$

Minimal heat flow is bounded - there is a constant that exceeds \{minimal EF to compute $v\}$ for all v : \log [sum of lengths of red lines]

Thermodynamic complexity of v :

$$
K(v)+\log [G(v)]+\log [Z]
$$

Expected heat flow is infinite

Kolchinsky, A., and Wolpert, D.,Phys. Rev. Res. (2020) 59

Thermodynamic complexity of v :

$$
\mathrm{K}(v)+\log [\mathrm{G}(v)]+\log [\mathrm{Z}]
$$

How do these results get modified if the update function of the TM is thermodynamically inefficient?

Answer: Who knows?
(See papers by Brittain et al., and Strasberg et al., in bibliography)

SUMMARY OF RESULTS

- Equation for heat expelled by a dynamic system (like a computer):

$$
E F(p 0)=\text { Landauer cost }(p 0)+E P(p 0)
$$

- Now have broadly applicable bounds on the second resource cost, EP(p0)
- Here consider two such bounds on that resource cost, SLT and mismatch cost.

1: Both SLT and mismatch cost distinguish among computationally equivalent circuits with identical number of gates

2: Rich behavior of mismatch cost for DFAs run for multiple iterations
3: Nontrivial scaling of mismatch cost with input size for insert-sort algorithm
4: Thermodynamic Kolmogorov complexity is bounded (unlike Kolmogorov complexity)
5: Average thermodynamic work to run a TM is infinite

BIBLIOGRAPHY (a bit out of date)

Analysis of electronic components used in digital computers

- Riechers, P., in "The Energetics of Computing in Life and Machines",

Wolpert, D. et al. (Ed.'s), SFI Press (2019)

- Freitas, N., Delvenne, J., Esposito, M., arxiv:2008.10578 (2021)
- Gao, C., Limmer, D., arxiv:2102.13067 (2021)
- Boyd, A. Riechers, P., Wimsatt, G., Crutchfield, J., Gu, M., arxiv:2104.12072 (2021)

Analysis of Turing machines - based on stochastic thermodynamics

- Strasberg, P., Cerrillo, J., Schaller, G., Brandes, T., Phys. Rev. E (2015)
- Wolpert, D., J. Phys. A (2019)
- Kolchinsky, A., Wolpert, D., Phys. Rev. R (2020)
- Brittain, R., Jones, N., Ouldridge, T., arxiv:2102.03388

Analysis of Turing machines - not based on stochastic thermodynamics

- Zurek, W., Phys. Rev. A (1989)
- translation into stochastic thermodynamics in Wolpert, D., J. Phys. A (2019)
- Bennett, C., IBM J. Res. Dev. (1973)

BIBLIOGRAPHY (a bit out of date)

Analysis of straight-line programs (including Bayes nets)

- Ito, S., Sagawa, T., Phys. Rev. Letters (2013)
- Ito, S., Sagawa, T., in "Mathematical Foundations and Applications of Graph Theory", Dehmer M., et al. (Ed.'s), Wiley (2015)
- Wolpert, D., J. Phys. A (2019)
- Wolpert, D., Kolchinsky, A., New J. Phys. (2020)
- Wolpert, D., Phys. Rev. Letters (2020)

Analysis of finite state automata (including Mealy machines)

- Ganesh N., Anderson N., Phys. Lett. A (2013)
- Chu D., Spinney R., arXiv:1806.04875 (2018)
- Garner A., Thompson J., Vedral V., Gu M., Phys. Rev. E (2017)
- Boyd A., Mandal D., Crutchfield J., New J. Phys. (2016)
- Boyd A., Mandal D., Crutchfield J., Phys. Rev. E (2017)
- Boyd A., Mandal D., Riechers P., Crutchfield J., Phys. Rev. Lett. (2017)
- Boyd A., Mandal D., Crutchfield J., J. Stat. Phys. (2017)

BIBLIOGRAPHY (a bit out of date)

Analysis of arbitrary asynchronous information processing systems

- Sagawa, T., Ueda, M., Phys. Rev. Letters (2009)
- Sagawa, T., Ueda, M., Phys. Rev. Letters (2012)
- Sagawa, T., Ueda, M., New. J. Phys. (2013)
- Horowitz, J., Esposito, M., Phys. Rev. X (2014)
- Barato, A., Hartich, D., Seifert, U., New. J. Phys. (2014)
- Horowitz, J., J. Stat. Mech.: Th. and Exp. (2015)
- Barato, A., Seifert, U., New. J. Phys. (2017)
- Hartich, D., Barato, A., Seifert, U., Phys. Rev. E (2016)
- Brittain, R., Jones, N., Ouldridge, T., J. Stat. Mech.: Th. and Exp. (2017)
- Kardeş, G., Wolpert, D., arxiv:2102:01610 (2020)
- Wolpert, D., arxiv:2003:11144 (2020)
- Wolpert, D., New J. Phys. (2020)

BIBLIOGRAPHY (a bit out of date)

Thermodynamic (Ir)relevance of logical reversibility

- Maroney, O., Phys. Rev. E (2009)
- Sagawa, T., J. Stat. Mech.: Th. and Exp. (2014)
- Wolpert, D., J. Phys. A (2019)

Miscellaneous

- Parrondo., J., Horowitz, J., Sagawa, T., Nature Physics (2015)
- Sheng, S., Herpich, T. Diana, G., Esposito, M., Entropy (2019)
- Wolpert, D., Kempes, C., Stadler, P., Grochow, J., "The Energetics of Computation in Life and Machines", SFI Press (2018)
- Grochow, J., Wolpert, D., ACM SIGACT News (2018)
- Wolpert, D., Kolchinsky, A., Owen, J., Nat. Comm. (2019)
- Owen, J., Kolchinsky, A., Wolpert, D., New J. Phys. (2019)
- Riechers, P.. Gu, M., Phys. Rev. E (2021)
- Kolchinsky, A., Wolpert D., arxiv:2103.05734

BIBLIOGRAPHY (a bit out of date)

Relevant computer science; comp. in biology; comp. in foundations of physics (very partial)

- Nielsen, M., Phys. Rev. Letters (1997)
- Pour-El, M., Richards, J., "Computability in Analysis and Physics" (1997)
- Tegmark, M., Annals of Phys. (1998)
- Hut, P., Alford, M., Tegmark, M., Found. Phys. (2006)
- Li, M., Vitanyi, P., "An introduction to Kolmogorov Complexity and its applications", Springer (2008)
- Soloveichik D., Cook M., Winfree E., and Bruck J., Nat. Computing (2008)
- Tegmark, M., Found. Phys. (2008)
- Arora, S., Barak, B., "Computational Complexity: A modern approach", CUP (2009)
- Prohoska, S., Stadler, P., Krakauer, D., J. Theor. Bio. (2010)
- Barrow, J., in "Kurt Godel and the Foundations of Mathematics", Baaz M., et al. (Ed.'s), CUP (2011)
- Aaronson, S., in "Electronic Colloquium on Computational Complexity" (2011)
- Qian, L, Winfree, E., Science (2011)
- Benenson, Y., Nat. Rev. Genetics (2012)
- Cubitt, T., Garcia-Perez, D., Wolf, M., Nature (2015)
- Allaghi, A., Hayes, J., IEEE Trans. CAD of ICs and Systems (2015)
- Barua, B., Mondal, C.; J. Inst. Engineers: Series B, (2019)
- Shiraishi, N., Matsumoto, K., arxiv:2012.13890

